Oligosarcoma Arising from Oligodendroglioma-A case report

Alison Ho1*, Shivum Desai2, Thanh N. Nguyen3, Jonathon Cooke4

1Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California, USA
2Arizona College of Osteopathic Medicine, Glendale, Arizona, USA
3University of Washington School of Medicine, Seattle, Washington, USA
4Naval Medical Center San Diego, California, USA

*Corresponding Author: Alison Ho, Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California, USA

Received date: 16 June 2022; Accepted date: 07 July 2022; Published date: 14 July 2022


Copyright: © 2022 Alison Ho. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

High-grade Oligodendroglioma with a sarcomatous component, Oligosarcoma, is a rare malignant tumor with features of oligodendroglial lineage and histological features corresponding to the World Health Organization (WHO) grade III, with sarcoma components [1,2]. Only a few cases of oligosarcoma with oligodendroglial components have been reported. Here we present the case of a patient treated for an oligodendroglioma who did not have initial optimal systemic therapy and continued to have a recurrence of the disease, which then progressed to oligosarcoma.

Keywords: Oligosarcoma, MRI, Oligodendroglioma, sarcomatous, tumor

Introduction

Oligodendroglioma, a neoplasm widely regarded as morphologically and clinically stable in nature, typically presents with a better prognosis than those astrocytic tumors [11-13]. This comprises approximately 0.5-1.2 % of all primary brain tumors and carries a unique histological feature of uniformly round nuclei with surrounding cytoplasmic clearing, the classic “fried egg” appearance [11,17]. One of the hallmark genetic findings of Oligodendroglioma is the combined arm deletion of chromosomes 1q and 19p. This chromosomal abnormality is associated with a favorable response to chemotherapy and improved patient outcomes, with a median overall survival of more than 14 years for patients treated with radiation and chemotherapy [11,17,20]. Here, we describe the case of a patient diagnosed and treated for Oligodendroglioma, who subsequently experienced a recurrence of the disease, which was found to be Oligodendroglioma with a sarcomatous component, so call oligosarcoma.

Rubinstein first discovered Oligodendroglioma with sarcomatous features in 1972 [21]. According to World Health Organization (WHO) classification, oligosarcoma is a malignant tumor of oligodendroglial lineage containing sarcomatous histological features and is categorized as WHO grade III [1,2]. In 2007 Rodriguez et al. published the most extensive case series regarding oligosarcoma. His study followed seven patients initially diagnosed with Oligodendroglioma but developed recurrent tumors with sarcomatous components [4]. Since then, only a few reports have been published in the literature, highlighting the rarity of oligosarcoma [3,14,15,16,19].

Case

A 46-year-old female patient presented with difficulty speaking. Magnetic resonance imaging (MRI) of the patient’s brain revealed a mass lesion in the left frontal lobe. The patient underwent gross total tumor resection via the left frontal approach. The histopathological diagnosis of the resected lesion was oligodendroglioma World Health Organization (WHO) Grade II. She was started on adjuvant radiation therapy during her postoperative course. As a result of her treatments, the patient did well and was periodically followed until nine years later, when a recurrent mass was identified on a routine MRI, demonstrating a mixed cystic, solid mass in the left frontal lobe region. The patient underwent revision surgery and resection of the recurrent mass. The histopathological diagnosis was oligodendroglioma World Health Organization (WHO) Grade III with a sarcomatous component (Figure 1). Fluorescence in situ hybridization (FISH) analysis revealed a 1p/19q codeletion. The patient subsequently started temozolomide chemotherapy.

Three years after her second surgery, a follow-up MRI brain with gadolinium contrast again revealed a growing mass at the site of the resection bed. Therefore, the patient underwent a third surgery using the same approach as her primary operations. Residual scar tissue was found near the postero-lateral aspect of the patient’s primary motor strip; therefore, the patient only had a subtotal resection of the...
recurrent mass. Radiotherapy was planned to follow the patient's third operation, in addition to temozolomide chemotherapy, which was resumed once the final pathological diagnosis again showed recurrent high-grade Oligodendroglioma with the sarcomatous component (Figure 2).

Figure 1: H&E- round nuclei with surrounding cytoplasmic clearing (perinuclear halo”) brisk mitotic activity, hypercellularity, endothelial hypertrophy, and necrosis

Figure 2: H&E- high grade features: increased mitotic activity, microvascular proliferation, necrosis with sarcomatous components

Discussion

Oligosarcoma commonly presents in the 3rd to 5th decades of life as a recurrent to the surgical site of previous oligodendroglioma resection with or without treatment after months to years [3,4,14,15,16,19]. The disease typically affects the frontal and temporal lobes of the brain, and patients will present with symptoms such as vertigo, seizures, headache, nausea, and vomiting [4,14,15,16,19]. Oligosarcomas retain many of the histological characteristics of oligodendrogliomas (monotonous round nuclei, perinuclear halos, and fine chromatin [4,5,12,14,23]) with the additional features specific to the novel sarcomatous components such as eosinophilia cytoplasm, spindle cells, mitotic figures, and cellular necrosis [4,14,15,16,19]. However, upon recurrence, oligosarcomas show a histology more consistent with anaplastic lesions, including hypercellularity, endothelial hypertrophy, brisk mitotic activity, irregular hyperchromatic nuclei, necrosis, and, occasionally, mucus-filled cysts [4,5,12,14,23]. Immunohistochemical staining of oligosarcomas shows Glial fibrillary acidic protein (GFAP) and S-100 protein reactivity secondary to the presence of typical glial cells and positive staining for alpha-smooth muscle actin and desmin as a result of sarcomatous features [4,14,15,16,19].

As outlined in a case series by Rodriguez et al. in 2007, the glial components of oligosarcomas expressed both GFAP and S-100 in all cases. In contrast, the sarcomatous component at least focally showed smooth muscle actin, CD34, S-100 protein, and epithelial membrane antigen reactivity. FISH studies demonstrated 1p/19q codeletion in 5 cases, no evidence of deletion in 1 point, and technically failed in 1 case. Three of the five instances showed 1p/19q codeletion in the sarcomatous component. Genetic analysis of this disease implicates a single nucleotide polymorphism on chromosome 8q24.21 in the evolution from Oligodendroglioma to oligosarcoma [4,8,6,14,19]. As stated in the literature, the most common method of treatment typically involves combination chemotherapy with procarbazine [Matulane], lomustine [CeeNU], and vincristine (PCV); and radiation following surgical resection [4]. However, recent reports note that immunotherapy with temozolomide following surgical resection is sufficient and adequate [14,15,16,19]. But they remain interested in the early use of PCV for these tumors due to evidence of a better prognosis [5]. The genetic marker of 1p/19q codeletion is the most significant and favorable allelic loss due it is associated with sensitivity to both chemotherapies and better outcomes with radiotherapy [4,5]. Most importantly, gross total resection is the standard gold treatment for oligosarcoma [7]. Furthermore, there was previously controversy due to the suspicion that postoperative radiation therapy for oligodendroglioma treatment could trigger the subsequent sarcomatous transformation into
oligosarcoma. However, this theory has been quashed due to multiple reports of oligosarcomas following oligodendrogliomas in patients with no history of radiation therapy [4,14,16,19]. Per Rodriguez et al., unfortunately, the prognosis of oligosarcoma after diagnosis is similar to that of glioblastoma with optimization of surgical and systemic treatment [4].

Conclusion

Maximal safe gross total resection is a gold standard in neuro-oncology to establish early diagnosis and reduce the mass effect, often the cause of symptoms and neurological deficits. Of note, intraoperative sensory evoked potential and phase reversal are essential information. They serve as guidance for the resection plane and can also show possible brain plasticity on subsequent surgery within the perilesional area. If this reorganization took place, this could allow for the total removal of the tumor without a cost to the patient's neurological deficits and decrease the tumor’s burden, which allows for reduced radio therapeutic portal size, increased effectiveness of chemotherapy, and limited sampling error, which often occurs in cases in which a biopsy sample alone is obtained [1]. Moreover, one should recognize that rare anaplastic and sarcomatous features can occur in recurrent previously resected low-grade

References


